ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 116263  (#1)

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 8,9

По кругу написаны все целые числа от 1 по 2010 в таком порядке, что при движении по часовой стрелке числа поочередно то возрастают, то убывают.
Докажите, что разность каких-то двух чисел, стоящих рядом, чётна.

Прислать комментарий     Решение

Задача 116264  (#2)

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Прямоугольник разбили на 121 прямоугольную клетку десятью вертикальными и десятью горизонтальными прямыми. У 111 клеток периметры целые.
Докажите, что и у остальных десяти клеток периметры целые.

Прислать комментарий     Решение

Задача 116265  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
[ Итерации ]
Сложность: 3+
Классы: 8,9,10,11

Длина взрослого червяка 1 метр. Если червяк взрослый, его можно разрезать на две части в любом отношении длин. При этом получаются два новых червяка, которые сразу начинают расти со скоростью 1 метр в час каждый. Когда длина червяка достигает метра, он становится взрослым и прекращает расти. Можно ли из одного взрослого червяка получить 10 взрослых червяков быстрее чем за час?

Прислать комментарий     Решение

Задача 116266  (#4)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Частные случаи треугольников (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Автор: Шевяков В.

Дан выпуклый четырёхугольник. Если провести в нем любую диагональ, он разделится на два равнобедренных треугольника. А если провести в нем обе диагонали сразу, он разделится на четыре равнобедренных треугольника. Обязательно ли этот четырёхугольник – квадрат?

Прислать комментарий     Решение

Задача 116267  (#5)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 8,9

Дракон заточил в темницу рыцаря и выдал ему 100 разных монет, половина из которых волшебные (какие именно – знает только дракон). Каждый день рыцарь раскладывает все монеты на две кучки (не обязательно равные). Если в кучках окажется поровну волшебных монет или поровну обычных, дракон отпустит рыцаря. Сможет ли рыцарь гарантированно освободиться не позже, чем
  а) на 50-й день?
  б) на 25-й день?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .