ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 64569  (#1)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи на проценты и отношения ]
Сложность: 3-
Классы: 5,6,7

Дети ходили в лес по грибы. Если Аня отдаст половину своих грибов Вите, у всех детей станет поровну грибов, а если вместо этого Аня отдаст все свои грибы Саше, то у Саши станет столько же грибов, сколько у всех остальных вместе взятых. Сколько детей ходило за грибами?

Прислать комментарий     Решение

Задача 64575  (#2)

Темы:   [ Прямоугольный треугольник с углом в 30╟ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Треугольники с углами 60╟ и 120╟ ]
Сложность: 3
Классы: 7,8

Два одинаковых прямоугольных треугольника из бумаги удалось положить один на другой так, как показано на рисунке (при этом вершина прямого угла одного попала на сторону другого). Докажите, что заштрихованный треугольник равносторонний.

Прислать комментарий     Решение

Задача 64576  (#3)

Тема:   [ Ребусы ]
Сложность: 3+
Классы: 6,7,8

Замените в слове МАТЕМАТИКА буквы цифрами и знаками сложения и вычитания так, чтобы получилось числовое выражение, равное 2014.
(Одинаковыми буквами обозначены одинаковые цифры или знаки, разными – разные. Достаточно привести пример.)

Прислать комментарий     Решение

Задача 64577  (#4)

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3+
Классы: 6,7,8

Автор: Шноль Д.Э.

Одуванчик утром распускается, три дня цветет жёлтым, на четвёртый день утром становится белым, а к вечеру пятого дня облетает. В понедельник днем на поляне было 20 жёлтых и 14 белых одуванчиков, а в среду – 15 жёлтых и 11 белых. Сколько белых одуванчиков будет на поляне в субботу?

Прислать комментарий     Решение

Задача 64578  (#5)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4-
Классы: 6,7,8

Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .