ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 65682  (#1)

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 8,9,10,11

На шахматном турнире для 12 участников каждый сыграл ровно по одной партии с каждым из остальных. За выигрыш давали 1 очко, за ничью – ½, за проигрыш – 0. Вася проиграл только одну партию, но занял последнее место, набрав меньше всех очков. Петя занял первое место, набрав больше всех очков. На сколько очков Вася отстал от Пети?

Прислать комментарий     Решение

Задача 65683  (#2)

Темы:   [ Обратные тригонометрические функции ]
[ Неравенство Коши ]
Сложность: 3
Классы: 9,10,11

Существует ли такое значение x, что выполняется равенство  arcsin2x + arccos2x = 1?

Прислать комментарий     Решение

Задача 65684  (#3)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 9,10,11

Внутри трапеции ABCD с основаниями AD и BC отмечены точки M и N так, что  AM = CN  и  BM = DN,  а четырёхугольники AMND и BMNC – вписанные. Докажите, что прямая MN параллельна основаниям трапеции.

Прислать комментарий     Решение

Задача 65685  (#4)

Темы:   [ Кооперативные алгоритмы ]
[ Принцип крайнего (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

В английском клубе вечером собрались n его членов  (n ≥ 3).  По традициям клуба каждый принес с собой сок того вида, который он предпочитает, в том количестве, которое он планирует выпить в течение вечера. Согласно правилам клуба, в любой момент любые три его члена могут присесть за столик и выпить сока (каждый – своего) в любом количестве, но обязательно все трое поровну. Докажите, что для того, чтобы все члены могли в течение вечера полностью выпить принесенный с собой сок, необходимо и достаточно, чтобы доля сока, принесенного каждым членом клуба, не превосходила одной трети от общего количества.

Прислать комментарий     Решение

Задача 65686  (#5)

Темы:   [ Куб ]
[ Теорема Пифагора в пространстве ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Разные задачи на разрезания ]
Сложность: 4
Классы: 10,11

Можно ли четырьмя плоскостями разрезать куб с ребром 1 на части так, чтобы для каждой из частей расстояние между любыми двумя её точками было:
  а) меньше 4/5;
  б) меньше 4/7?
Предполагается, что все плоскости проводятся одновременно, куб и его части не двигаются.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .