Страница:
<< 1 2 [Всего задач: 8]
Задача
65709
(#11.6)
|
|
Сложность: 4- Классы: 10,11
|
В пространстве расположены 2016 сфер, никакие две из них не совпадают. Некоторые из сфер – красного цвета, а остальные – зелёного. Каждую точку касания красной и зелёной сферы покрасили в синий цвет. Найдите наибольшее возможное количество синих точек.
Задача
65713
(#11.7)
|
|
Сложность: 4+ Классы: 9,10,11
|
По кругу стоят n мальчиков и n девочек. Назовём пару из мальчика и девочки хорошей, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах.
Задача
65740
(#11.8)
|
|
Сложность: 4 Классы: 10,11
|
Натуральное число N представляется в виде N = a1 – a2 = b1 –
b2 = c1 – c2 = d1 – d2, где a1 и a2 – квадраты, b1 и b2 – кубы, c1 и c2 – пятые степени, а d1 и d2 – седьмые степени натуральных чисел. Обязательно ли среди чисел a1, b1, c1 и d1 найдутся два равных?
Страница:
<< 1 2 [Всего задач: 8]