Страница: << 1 2 [Всего задач: 8]
Задача
66265
(#9.6)
|
|
Сложность: 3+ Классы: 8,9,10
|
Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что AM = MD. Докажите, что ∠PMB = ∠QMB.
Задача
66266
(#9.7)
|
|
Сложность: 4- Классы: 8,9,10
|
Из высот остроугольного треугольника можно составить треугольник. Докажите, что из его биссектрис тоже можно составить треугольник.
Задача
66267
(#9.8)
|
|
Сложность: 5- Классы: 9,10,11
|
Диагонали вписанного четырёхугольника ABCD пересекаются в точке M. Окружность ω касается отрезка MA в точке P, отрезка MD в точке Q и описанной окружности Ω четырёхугольника ABCD в точке X. Докажите, что X лежит на радикальной оси описанных окружностей ωQ и ωP треугольников ACQ и BDP.
Страница: << 1 2 [Всего задач: 8]