ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 66631  (#6)

Темы:   [ Теория алгоритмов (прочее) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3+
Классы: 9,10,11

Высота каждой из 2019 ступенек «лестницы» (см. рисунок) равна 1, а ширина увеличивается от 1 до 2019. Правда ли, что отрезок, соединяющий левую нижнюю и правую верхнюю точки этой лестницы, не пересекает лестницу?

Прислать комментарий     Решение

Задача 66632  (#7)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9,10,11

Сумма нескольких положительных чисел равна единице. Докажите, что среди них найдётся число, не меньшее суммы квадратов всех чисел.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .