ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]      



Задача 66814  (#10.6)

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

В остроугольном треугольнике $ABC$ ($AC>AB$ ) провели биссектрису $AK$ и медиану $AT$, последнюю продлили до пересечения с описанной окружностью треугольника в точке $D$. Точка $F$ симметрична $K$ относительно $T$. Даны углы треугольника $ABC$, найдите угол $FDA$.
Прислать комментарий     Решение


Задача 66815  (#10.7)

Темы:   [ ГМТ - прямая или отрезок ]
[ Вневписанные окружности ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные подобные треугольники ]
Сложность: 5
Классы: 9,10,11

Автор: Tran Quang Hung

Пусть $P$ – произвольная точка на стороне $BC$ треугольника $ABC$, $K$ – центр вписанной окружности треугольника $PAB$, а $F$ – точка касания вписанной окружности треугольника $PAC$ со стороной $BC$. Точка $G$ на $CK$ такова, что $FG\parallel PK$. Найдите геометрическое место точек $G$.
Прислать комментарий     Решение


Задача 66816  (#10.8)

Темы:   [ Куб ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

В пространстве даны несколько точек и несколько плоскостей. Известно, что через любые две точки проходят ровно две плоскости, а каждая плоскость содержит не меньше четырех точек. Верно ли, что все точки лежат на одной прямой?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .