Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 60]
|
|
Сложность: 3 Классы: 8,9,10
|
В государстве царя Додона расположено 500 городов, каждый из которых имеет
форму правильной 37-угольной звезды, в вершинах которой находятся башни. Додон
решил обнести их выпуклой стеной так, чтобы каждый отрезок стены соединял две
башни. Доказать, что стена будет состоять не менее чем из 37 отрезков. (Если несколько отрезков лежат на одной прямой, то они считаются за один.)
|
|
Сложность: 3+ Классы: 8,9,10
|
На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что существует неостроугольный треугольник с вершинами в этих точках.
|
|
Сложность: 3+ Классы: 8,9,10
|
На круглой сковороде площади 1 испекли выпуклый блин площади больше ½.
Докажите, что центр сковороды находится под блином.
|
|
Сложность: 3+ Классы: 10,11
|
Из любых шести точек на плоскости (из которых никакие три не лежат на одной
прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет
хотя бы один угол, не больший
30o. Доказать.
Пусть на плоскости есть пять точек общего положения, то есть никакие три из них
не лежат на одной прямой и никакие четыре — на одной окружности. Докажите,
что среди этих точек есть две такие, что они лежат по разные стороны от
окружности, проходящей через оставшиеся три точки.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 60]