ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат. Для положительных чисел x1, x2, ..., xn докажите неравенство |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 58]
Карточка матлото представляет собой таблицу 10×10 клеточек. Играющий
отмечает 10 клеточек и отправляет карточку в конверте. После этого в газете
публикуется десятка проигрышных клеточек. Докажите, что
В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?
В некоторых клетках доски 2n×2n стоят чёрные и белые фишки. С доски сначала снимаются все чёрные фишки, которые стоят в одной вертикали с какой-то белой, а затем все белые фишки, стоящие в одной горизонтали с какой-нибудь из оставшихся чёрных. Докажите, что либо чёрных, либо белых фишек на доске осталось не более n².
Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.
В квадрате 4×4 клетки левой половины покрашены в чёрный цвет, а остальные – в белый. За одну операцию разрешается перекрасить в противоположный цвет все клетки внутри любого прямоугольника. Как за три операции из первоначальной раскраски получить шахматную?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 58]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке