Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 112]      



Задача 98036

Темы:   [ Произведения и факториалы ]
[ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Задачи с ограничениями ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

Рассмотрим все возможные наборы чисел из множества  {1, 2, 3, ..., n},  не содержащие двух соседних чисел.
Докажите, что сумма квадратов произведений чисел в этих наборах равна  (n + 1)! – 1.

Прислать комментарий     Решение

Задача 98194

Темы:   [ Числа Фибоначчи ]
[ Рекуррентные соотношения (прочее) ]
[ Взвешивания ]
Сложность: 4-
Классы: 8,9,10

Автор: Звонкин Д.

Требуется сделать набор гирек, каждая из которых весит целое число граммов, с помощью которых можно взвесить любой целый вес от 1 до 55 граммов включительно даже в том случае, если некоторые гирьки потеряны (гирьки кладутся на одну чашку весов, измеряемый вес – на другую). Рассмотрите два варианта задачи:
  а) необходимо подобрать 10 гирек, из которых может быть потеряна любая одна;
  б) необходимо подобрать 12 гирек, из которых могут быть потеряны любые две.

Прислать комментарий     Решение

Задача 110036

Темы:   [ Последовательности (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10,11

Автор: Храбров А.

По данному натуральному числу a0 строится последовательность {an} следующим образом     если an нечётно, и a0/2, если an чётно. Докажите, что при любом нечётном  a0 > 5  в последовательности {an} встретятся сколь угодно большие числа.

Прислать комментарий     Решение

Задача 32082

Темы:   [ Числа Каталана ]
[ Рекуррентные соотношения (прочее) ]
[ Системы точек и отрезков (прочее) ]
Сложность: 4
Классы: 8,9,10

На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?

Прислать комментарий     Решение

Задача 61029

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4
Классы: 10,11

Докажите, что многочлен  P(x) = (xn+1 – 1)(xn+2 – 1)...(xn+m – 1)  делится на  Q(x) = (x – 1)(x2 – 1)...(xm – 1).

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .