Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На доске написаны числа 2, 3, 4, ..., 29, 30. За рубль можно отметить любое число. Если какое-то число уже отмечено, можно бесплатно отмечать его делители и числа, кратные ему. За какое наименьшее число рублей можно отметить все числа на доске?

Вниз   Решение


В доме $8N$ этажей. В подъезде два лифта, в каждом из которых кнопки расположены в виде прямоугольника $N\times 8$ ($N$ строк, 8 столбцов), но пронумерованы по-разному: в одном «слева направо, снизу вверх», а в другом «снизу вверх, слева направо» (пример для $N=3$ см. на рисунке). Даня нажимает кнопку своего этажа, не глядя на нумерацию, потому что эта кнопка в обоих лифтах расположена на одном и том же месте. На каком этаже он может жить? (Например, для $N=3$ ответ 1 и 24. Требуется найти все возможные варианты в зависимости от $N$.)

17 18 19 20 21 22 23 24
9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8
3 6 9 12 15 18 21 24
2 5 8 11 14 17 20 23
1 4 7 10 13 16 19 22

ВверхВниз   Решение


Дан отрезок AB. Найдите геометрическое место вершин C остроугольных треугольников ABC.

Вверх   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 201]      



Задача 111863

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 5-
Классы: 8,9,10,11

Дано конечное множество простых чисел P. Докажите, что найдётся такое натуральное число x , что оно представляется в виде  x = ap + bp  (с натуральными a, b) при всех   pP   и не представляется в таком виде для любого простого pP.

Прислать комментарий     Решение

Задача 111044

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
[ Малая теорема Ферма ]
Сложность: 5+
Классы: 9,10,11

Пусть p – простое число. Докажите, что при некотором простом q все числа вида  np – p  не делятся на q.

Прислать комментарий     Решение

Задача 36910

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Простые числа и их свойства ]
[ Целочисленные треугольники ]
Сложность: 2
Классы: 7,8

Существует ли треугольник, градусная мера каждого угла которого выражается простым числом?

Прислать комментарий     Решение

Задача 88069

Темы:   [ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
Сложность: 2
Классы: 5,6,7

Известно, что  p > 3  и p – простое число. Как вы думаете:
  а) будут ли чётными числа  p + 1  и  p – 1;
  б) будет ли хотя бы одно из них делиться на 3?

Прислать комментарий     Решение

Задача 88079

Темы:   [ Четность и нечетность ]
[ Простые числа и их свойства ]
Сложность: 2
Классы: 6,7,8

Найдите два таких простых числа, что и их сумма, и их разность – тоже простые числа.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .