Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Саша выбрал натуральное число  N > 1  и выписал в строчку в порядке возрастания все его натуральные делители:  d1 < ... < ds  (так что  d1 = 1  и
ds = N).  Затем для каждой пары стоящих рядом чисел он вычислил их наибольший общий делитель; сумма полученных  s – 1  чисел оказалась равной
N – 2.  Какие значения могло принимать N?

Вниз   Решение


Все грани треугольной пирамиды SABC – остроугольные треугольники. SX и SY – высоты граней ASВ и BSС. Известно, что четырёхугольник AXYC – вписанный. Докажите, что прямые AC и BS перпендикулярны.

ВверхВниз   Решение


Докажите, что сумма высот треугольника меньше его периметра.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 997]      



Задача 112386

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+5)8-8x на отрезке [-4,5;0] .
Прислать комментарий     Решение


Задача 112387

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+6)9-9x на отрезке [-5,5;0] .
Прислать комментарий     Решение


Задача 112388

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+4)5-5x на отрезке [-3,5;0] .
Прислать комментарий     Решение


Задача 112389

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+6)4-4x на отрезке [-5,5;0] .
Прислать комментарий     Решение


Задача 112390

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+5)3-3x на отрезке [-4,5;0] .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 997]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .