Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 598]
Найти все двузначные числа, сумма цифр которых не меняется при умножении числа
на 2, 3, 4, 5, 6, 7, 8 и 9.
От A до B 999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до A и до B:
,
, ...,
.
Сколько среди них таких, на которых имеются только две различные цифры?
|
|
Сложность: 3 Классы: 8,9,10
|
Сколько существует четырёхзначных номеров (от 0001 до 9999), у которых
сумма двух первых цифр равна сумме двух последних цифр?
|
|
Сложность: 3 Классы: 10,11
|
Число N является точным квадратом и не заканчивается нулём. После
зачёркивания у этого числа двух последних цифр снова получится точный квадрат.
Найти наибольшее число N с таким свойством.
|
|
Сложность: 3 Классы: 7,8,9
|
У числа 21970 зачеркнули его первую цифру и прибавили её к оставшемуся числу. С результатом проделали ту же операцию и т.д., до тех пор пока не получили десятизначное число. Доказать, что в этом числе есть две одинаковые
цифры.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 598]