ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 418]      



Задача 31298

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Доказать, что  32n – 1   a) делится на 2n+2;   б) не делится на 2n+3.

Прислать комментарий     Решение

Задача 34990

Темы:   [ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для любого натурального n найдутся n подряд идущих составных натуральных чисел.

Прислать комментарий     Решение

Задача 35701

Темы:   [ Делимость чисел. Общие свойства ]
[ Криптография ]
Сложность: 3+
Классы: 8,9,10

Суммой двух букв назовём букву, порядковый номер которой в алфавите имеет тот же остаток от деления на число букв в алфавите, что и сумма порядковых номеров исходных двух букв. Суммой двух буквенных последовательностей одинаковой длины назовём буквенную последовательность той же длины, полученную сложением букв исходных последовательностей, стоящих на одинаковых местах. Докажите, что существует последовательность из 33 различных букв русского алфавита, сумма которой с последовательностью букв, представляющей собой сам этот алфавит, не содержит одинаковых букв.

Прислать комментарий     Решение

Задача 60390

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Итерации ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для любого натурального a найдётся такое натуральное n, что все числа  n + 1,  nn + 1,  nnn + 1,  ...  делятся на a.

Прислать комментарий     Решение

Задача 60464

Темы:   [ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8

Докажите, что существуют 1000 подряд идущих составных чисел.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .