Страница:
<< 12 13 14 15 16 17 18 [Всего задач: 89]
|
|
Сложность: 4 Классы: 7,8,9,10
|
Перед вами часы. Сколько существует положений стрелок, по которым нельзя определить время, если не знать, какая стрелка часовая,
а какая – минутная?
Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое
число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты
можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму
в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников.
|
|
Сложность: 5- Классы: 9,10,11
|
Имеются 13 гирь. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть на каждую, что наступит равновесие.
Докажите, что все гири имеют одну и ту же массу, если известно, что:
а) масса каждой гири равна целому числу граммов;
б) масса каждой гири равна рациональному числу граммов;
в) масса каждой гири может быть равна любому действительному (неотрицательному) числу.
а) На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, чтобы их среднее арифметическое не представлялось в виде среднего арифметического никаких девяти из выписанных на доске чисел.
б) На доске выписано 100 целых чисел. Известно, что для любых
восьми из этих чисел найдутся такие девять из этих чисел, что среднее
арифметическое этих восьми чисел равно среднему арифметическому этих девяти
чисел. Докажите, что все числа равны.
Страница:
<< 12 13 14 15 16 17 18 [Всего задач: 89]