ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 737]      



Задача 110922

Темы:   [ Симметричная стратегия ]
[ Неравенство треугольника (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 7,8,9

Играют двое. В начале игры есть одна палочка. Первый игрок ломает эту палочку на две части. И так игроки по очереди ломают на две части любую палочку из имеющихся к данному моменту. Если, сломав палочку, игрок может сложить из всех имеющихся палочек один или несколько отдельных треугольников (каждый – ровно из трёх палочек), то он выиграл. Кто из игроков (первый или второй) может обеспечить себе победу независимо от действий другого игрока?

Прислать комментарий     Решение

Задача 115391

Темы:   [ Теория алгоритмов (прочее) ]
[ Математическая логика (прочее) ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10,11

В ряд слева направо лежит 31 кошелёк, в каждом по 100 монет. Из одного кошелька часть монет переложили: по одной монете в каждый из кошельков справа от него. За один вопрос можно узнать суммарное число монет в любом наборе кошельков. За какое наименьшее число вопросов можно гарантированно вычислить "облегчённый" кошелёк?

Прислать комментарий     Решение

Задача 116050

Темы:   [ Теория игр (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Два мага сражаются друг с другом. Вначале они оба парят над морем на высоте 100 метров. Маги по очереди применяют заклинания вида "уменьшить высоту парения над морем на a метров у себя и на b метров у соперника", где a, b – действительные числа,  0 < a < b.  Набор заклинаний у магов один и тот же, их можно использовать в любом порядке и неоднократно. Маг выигрывает дуэль, если после чьего-либо хода его высота над морем будет положительна, а у соперника – нет. Существует ли такой набор заклинаний, что второй маг может гарантированно выиграть (как бы ни действовал первый), если при этом число заклинаний в наборе
  а) конечно;  б) бесконечно?

Прислать комментарий     Решение

Задача 116064

Тема:   [ Кооперативные алгоритмы ]
Сложность: 4-
Классы: 6,7,8

Дракон запер в пещере шестерых гномов и сказал: "У меня есть семь колпаков семи цветов радуги. Завтра утром я завяжу вам глаза и надену на каждого по колпаку, а один колпак спрячу. Затем сниму повязки, и вы сможете увидеть колпаки на головах у других, но общаться я вам уже не позволю. После этого каждый втайне от других скажет мне цвет спрятанного колпака. Если угадают хотя бы трое, всех отпущу. Если меньше – съем на обед". Как гномам заранее договориться действовать, чтобы спастись?

Прислать комментарий     Решение

Задача 116651

Темы:   [ Теория игр (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

На столе лежит куча из более чем n² камней. Петя и Вася по очереди берут камни из кучи, первым берёт Петя. За один ход можно брать любое простое число камней, меньшее n, либо любое кратное n число камней, либо один камень. Докажите, что Петя может действовать так, чтобы взять последний камень независимо от действий Васи.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .