ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 178]      



Задача 64404

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 5

Автор: Белухов Н.

Дан бумажный треугольник, площадь которого равна ½, а квадраты всех сторон – целые числа.
Докажите, что в него можно завернуть квадрат с площадью ¼ (треугольник можно сгибать, но нельзя резать).

Прислать комментарий     Решение

Задача 116645

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Степень вершины ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 5
Классы: 8,9,10

Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.

Прислать комментарий     Решение

Задача 58231

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Разрежьте квадрат на 8 остроугольных треугольников.
Прислать комментарий     Решение


Задача 58232

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Можно ли какой-нибудь невыпуклый 5-угольник разрезать на два равных 5-угольника?
Прислать комментарий     Решение


Задача 58233

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Разрежьте произвольный тупоугольный треугольник на 7 остроугольных.
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 178]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .