ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1311]      



Задача 30442

Тема:   [ Симметричная стратегия ]
Сложность: 3-
Классы: 7,8

Имеется две кучки камней - по 7 в каждой. За ход разрешается взять любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.

Прислать комментарий     Решение


Задача 30447

Тема:   [ Симметричная стратегия ]
Сложность: 3-
Классы: 6,7,8

В каждой клетке доски 11 × 11 стоит шашка. За ход разрешается снять с доски любое количество подряд идущих шашек либо из одного вертикального, либо из одного горизонтального ряда. Выигрывает снявший последнюю шашку.

Прислать комментарий     Решение

Задача 30449

Тема:   [ Симметричная стратегия ]
Сложность: 3-
Классы: 6,7,8

На окружности расставлено 20 точек. За ход разрешается соединить любые две из них отрезком, не пересекающим отрезков, проведенных ранее. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 32808

Тема:   [ Теория игр (прочее) ]
Сложность: 3-
Классы: 7,8,9

Докажите, что в игре в "крестики-нолики" на поле 3*3 при правильной игре первого игрока второй игрок выиграть не сможет.
Прислать комментарий     Решение


Задача 35430

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8

Дана клетчатая доска размером  а) 10×12;  б) 9×10;  в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия?

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .