Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 1308]
|
|
Сложность: 3+ Классы: 7,8,9
|
Игра происходит на квадрате клетчатой бумаги 9×9. Играют двое, ходят по
очереди. Начинающий игру ставит в свободные клетки крестики, его партнер –
нолики. Когда все клетки заполнены, подсчитывается количество К строк и столбцов,
в которых крестиков больше, чем ноликов,и количество Н строк и столбцов, в которых ноликов больше, чем крестиков. Разность В = К – Н считается выигрышем игрока, который начинает. Найдите такое значение B, что
1) первый игрок может обеспечить себе выигрыш не меньше B, как бы ни играл
второй игрок;
2) второй игрок всегда может добиться того, что первый получит выигрыш не
больше B, как бы тот ни играл.
|
|
Сложность: 3+ Классы: 7,8,9
|
Играют двое. Первый выписывает в строку слева направо цифры, произвольно
чередуя 0 и 1, пока цифр не станет всего 1999. Каждый раз после того, как
первый выписал очередную цифру, второй меняет между собой две цифры из уже
написанного ряда (когда написана только одна цифра, второй пропускает ход). Всегда ли второй может добиться того, чтобы после его последнего хода расположение цифр было симметричным относительно средней цифры?
В Колиной коллекции есть четыре царские золотые пятирублевые монеты. Коле сказали, что какие-то две из них фальшивые. Коля хочет проверить (доказать или опровергнуть), что среди монет есть ровно две фальшивые. Удастся ли ему это сделать с помощью двух взвешиваний на чашечных весах без гирь? (Фальшивые монеты одинаковы по весу, настоящие тоже одинаковы по весу, но фальшивые легче настоящих.)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Саша и Маша загадали по натуральному числу и сообщили их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нём оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?
На столе лежат 2002 карточки с числами 1, 2, 3,... , 2002. Двое играющих берут по одной карточке по очереди. После того, как будут взяты все карточки, выигравшим считается тот, у кого больше последняя цифра суммы чисел на взятых карточках. Кто из играющих может всегда выигрывать, как бы ни играл противник, и как он должен при этом играть?
Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 1308]