Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 352]
Диагональ AC трапеции ABCD равна боковой стороне CD.
Прямая, симметричная BD относительно AD, пересекает прямую AC в точке E.
Докажите, что прямая AB делит отрезок DE пополам.
|
|
Сложность: 4 Классы: 8,9,10
|
На дугах AB и BC окружности, описанной около треугольника ABC, выбраны соответственно точки K и L так, что прямые KL и AC параллельны.
Докажите, что центры вписанных окружностей треугольников ABK и CBL равноудалены от середины дуги ABC.
На сторонах AB, BC, CA треугольника ABC выбраны точки P,
Q, R соответственно таким образом, что AP = CQ и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности
треугольника ABC в точках A и C пересекают прямые RP и
RQ в точках X и Y соответственно. Докажите, что RX = RY.
Назовём два неравных треугольника похожими, если можно обозначить их ABC и A'B'C' так, чтобы выполнялись равенства AB = A'B', AC = A'C' и
∠B = ∠B'. Существуют ли три попарно похожих треугольника?
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках
M и N. Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.
Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 352]