Страница:
<< 45 46 47 48
49 50 51 >> [Всего задач: 352]
Докажите равенство треугольников по трём медианам.
Две окружности пересекаются в точках A и B. Через точку A
проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что ∠MKN = 90°. (Можно считать, что точки C и D лежат по разные стороны от точки A).
На сторонах произвольного треугольника ABC внешним образом
построены равнобедренные треугольники с углами 2α, 2β и
2γ при вершинах A', B' и C', причём α + β + γ = 180°. Докажите, что углы треугольника A'B'C' равны α, β и γ.
На сторонах выпуклого четырёхугольника ABCD внешним образом построены подобные ромбы, причём их острые углы α прилегают к вершинам A и C. Докажите, что отрезки, соединяющие центры противоположных ромбов,
равны, а угол между ними равен α.
В равнобедренном треугольнике ABC (AB = BC) средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.
Страница:
<< 45 46 47 48
49 50 51 >> [Всего задач: 352]