|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На олимпиаду пришло 2018 участников, некоторые из них знакомы между собой. Будем говорить, что несколько попарно знакомых участников образуют "кружок", если любой другой участник олимпиады не знаком с кем-то из них. Докажите, что можно рассадить всех участников олимпиады по 90 аудиториям так, что ни в какой аудитории не будут сидеть все представители какого-либо "кружка". В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$. |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 92]
Через данную точку окружности проведите хорду, которая бы делилась данной хордой пополам.
С помощью циркуля и линейки постройте треугольник по стороне, притиволежащему углу и медиане, проведённой из вершины одного из прилежащих углов.
Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении 1 : 2.
С помощью циркуля и линейки постройте треугольник ABC, если заданы его наименьший угол при вершине A и отрезки d = AB – BC и e = AC – BC.
Постройте треугольник ABC по углам A и B и разности сторон AC и BC.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 92] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|