Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 192]
|
|
Сложность: 4- Классы: 8,9,10
|
В первые 1999 ячеек компьютера в указанном
порядке записаны числа: 1, 2, 4,
2
1998
. Два программиста
по очереди уменьшают за один ход на единицу числа в пяти
различных ячейках. Если в одной из ячеек появляется отрицательное число,
то компьютер ломается, и сломавший его оплачивает ремонт.
Кто из программистов может уберечь себя от финансовых потерь
независимо от ходов партнера, и как он должен для этого действовать?
|
|
Сложность: 4- Классы: 9,10
|
Назовём последовательность натуральных чисел интересной, если каждый её член, кроме первого, является либо средним арифметическим, либо средним геометрическим двух соседних с ним членов. Сеня начал последовательность с трёх натуральных чисел, образующих возрастающую геометрическую прогрессию. Он хотел бы
продолжить свою последовательность до бесконечной интересной последовательности, которая ни с какого момента не становится ни арифметической, ни геометрической прогрессией.
Может ли оказаться, что этого нельзя сделать?
|
|
Сложность: 4- Классы: 9,10
|
Дана такая возрастающая бесконечная последовательность натуральных чисел
a1, ...,
an, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?
|
|
Сложность: 4- Классы: 9,10,11
|
Назовём тройку натуральных чисел (a, b, c) квадратной, если они образуют арифметическую прогрессию (именно в таком порядке), число b взаимно просто с каждым из чисел a и c, а число abc является точным квадратом. Докажите, что для любой квадратной тройки найдётся другая квадратная тройка, имеющая с ней хотя бы одно общее число. (Тройка (c, b, a) новой тройкой не считается.)
|
|
Сложность: 4 Классы: 8,9,10
|
В любой арифметической прогрессии a, a + d, a + 2d, ..., a + nd, ..., составленной из натуральных чисел, есть бесконечно много членов, в разложении которых на простые множители входят в точности одни и те же простые числа. Докажите это.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 192]