ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В начале года винтики, шпунтики и гаечки продавались по одинаковой цене 1 рубль за 1 кг. 27 февраля Верховный Совет СССР принял закон о повышении цены на винтики на 50% и снижении цены на шпунтики на 50%. 28 февраля Верховный Совет РСФСР принял закон о снижении цены на винтики на 50% и повышении цены на шпунтики на 50%. Какой товар будет самым дорогим и какой самым дешёвым в марте? На описанной окружности треугольника ABC отметили середины дуг BAC и CBA – точки M и N соответственно, и середины дуг BC и AC – точки P и Q соответственно. Окружность ω1 касается стороны BC в точке A1 и продолжений сторон AC и AB. Окружность ω2 касается стороны AC в точке B1 и продолжений сторон BA и BC. Оказалось, что A1 лежит на отрезке NP. Докажите, что B1 лежит на отрезке MQ. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]
Докажите, что при умножении многочлена (x + 1)n–1 на любой многочлен, отличный от нуля, получается многочлен, имеющий не менее n отличных от нуля коэффициентов.
Барон Мюнхгаузен придумал теорему: если многочлен xn−axn−1+bxn−2+… имеет n натуральных корней, то на плоскости найдутся a прямых, у которых ровно b точек пересечения друг с другом. Не ошибается ли барон?
P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.
Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?
Пусть многочлен P(x) = anxn + an–1xn–1 + ... + a0 имеет хотя бы один действительный корень и a0 ≠ 0. Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке