Страница:
<< 19 20 21 22 23 24 25 >> [Всего задач: 199]
|
|
Сложность: 3 Классы: 7,8,9
|
На столе стоят 13 перевёрнутых стаканов. Разрешается одновременно переворачивать любые два стакана.
Можно ли добиться того, чтобы все стаканы стояли правильно?
|
|
Сложность: 3 Классы: 7,8,9
|
В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?
В таблице 3×3 одна из угловых клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.
|
|
Сложность: 3+ Классы: 8,9,10
|
На длинной скамейке сидели мальчик и девочка. К ним по одному подошли еще 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?
В строку выписано m натуральных чисел. За один ход можно прибавить по единице к некоторым n из этих чисел.
Всегда ли можно сделать все числа равными?
Страница:
<< 19 20 21 22 23 24 25 >> [Всего задач: 199]