ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 159 160 161 162 163 164 165 >> [Всего задач: 1110]      



Задача 30283

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
Сложность: 2+
Классы: 6,7

Конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов.

Прислать комментарий     Решение

Задача 30284

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
Сложность: 2+
Классы: 6,7

Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?

Прислать комментарий     Решение

Задача 30294

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Симметрия помогает решить задачу ]
Сложность: 2+
Классы: 5,6,7

На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно диагонали.
Докажите, что одна из шашек расположена на диагонали.

Прислать комментарий     Решение

Задача 30345

Темы:   [ Правило произведения ]
[ Шахматные доски и шахматные фигуры ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 6,7,8,9

Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга?

Прислать комментарий     Решение

Задача 30436

Темы:   [ Игры-шутки ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 2+
Классы: 6,7,8

Двое по очереди ставят ладей на шахматную доску так, чтобы ладьи не били друг друга. Проигрывает тот, кто не может сделать ход. Кто выиграет?

Прислать комментарий     Решение

Страница: << 159 160 161 162 163 164 165 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .