ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан правильный тетраэдр с ребром a . Найдите объём многогранника, полученного в пересечении этого тетраэдра со своим образом при симметрии относительно середины высоты.

Вниз   Решение


Пусть при инверсии с центром O точка A переходит в A', а точка B – в B'. Докажите, что треугольники OAB и OB'A' подобны.

ВверхВниз   Решение


Теорема синусов и первая теорема косинусов для трехгранного угла. Пусть имеется трехгранный угол с плоскими углами $ \alpha$, $ \beta$, $ \gamma$ и противолежащими им двугранными углами A, B, C. Для него справедлива теорема синусов (8.7 ) и две теоремы косинусов (8.6 ), (8.8) (смотрите ниже). После того, как одна из этих теорем доказана, другие могут быть получены путем алгебраических преобразований. Отвлечемся от геометрической природы задачи и предположим, что просто даны равенства

cos$\displaystyle \alpha$ = cos$\displaystyle \beta$cos$\displaystyle \gamma$ + sin$\displaystyle \beta$sin$\displaystyle \gamma$cos A,
cos$\displaystyle \beta$ = cos$\displaystyle \alpha$cos$\displaystyle \gamma$ + sin$\displaystyle \alpha$sin$\displaystyle \gamma$cos B,
cos$\displaystyle \gamma$ = cos$\displaystyle \alpha$cos$\displaystyle \beta$ + sin$\displaystyle \alpha$sin$\displaystyle \beta$cos C,
(8.6)

и, кроме того, величины $ \alpha$, $ \beta$, $ \gamma$ и A, B, C заключены между 0 и $ \pi$. Докажите, что

$\displaystyle {\frac{\sin A}{\sin \alpha}}$ = $\displaystyle {\frac{\sin B}{\sin 
\beta}}$ = $\displaystyle {\frac{\sin C}{\sin \gamma}}$. (8.7)


Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 123]      



Задача 30419

Тема:   [ Степень вершины ]
Сложность: 2
Классы: 6,7

В государстве 100 городов, и из каждого из них выходит 4 дороги. Сколько всего дорог в государстве?

Прислать комментарий     Решение

Задача 30420

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

В классе 30 человек. Может ли быть так, что 9 из них имеют по 3 друга (в этом классе), 11 – по 4 друга, а 10 – по 5 друзей?

Прислать комментарий     Решение

Задача 30421

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы было четыре телефона, каждый из которых соединен с тремя другими, восемь телефонов, каждый из которых соединен с шестью, и три телефона, каждый из которых соединен с пятью другими?

Прислать комментарий     Решение

Задача 30780

Тема:   [ Степень вершины ]
Сложность: 2
Классы: 6,7

Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.

Прислать комментарий     Решение

Задача 30418

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 123]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .