ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 200]      



Задача 30870

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 9,10

Докажите, что  x4 + y4 + 8 ≥ 8xy  при любых x и y.

Прислать комментарий     Решение

Задача 30871

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 9,10

a, b, c, d – положительные числа. Докажите, что  

Прислать комментарий     Решение

Задача 30872

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 9,10

a, b, c – положительные числа. Докажите, что  

Прислать комментарий     Решение

Задача 30873

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 9,10

Докажите, что при  x ≥ 0  имеет место неравенство   3x³ – 6x² + 4 ≥ 0.

Прислать комментарий     Решение

Задача 32100

Темы:   [ Неравенство Коши ]
[ Классические неравенства (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9,10

Доказать неравенство   .

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .