ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 120]      



Задача 116533

Темы:   [ Произведения и факториалы ]
[ Делимость чисел. Общие свойства ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найдите наименьшее натуральное значение n, при котором число n! делится на 990.

Прислать комментарий     Решение

Задача 30363

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

Может ли n! оканчиваться ровно на пять нулей?

Прислать комментарий     Решение

Задача 30364

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

На сколько нулей оканчивается число 100!?

Прислать комментарий     Решение

Задача 32778

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Дано число 1·2·3·4·5·...·56·57.
  а) Какая последняя цифра этого числа?
  б) Каковы десять последних цифр этого числа?

Прислать комментарий     Решение

Задача 35455

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что число 100! не является полным квадратом.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 120]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .