Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 737]
Игра начинается с числа 1000. За ход разрешается вычесть из имеющегося числа любое, не превосходящее его, натуральное число, являющееся степенью двойки (1 = 2
0). Выигрывает тот, кто получит ноль.
|
|
Сложность: 4 Классы: 7,8,9
|
В колоде 16 карт, пронумерованных сверху вниз. Разрешается снять часть колоды сверху, после чего снятую и оставшуюся части колоды, не переворачивая "врезать" друг в друга. Может ли случиться, что после нескольких таких операций карты окажутся пронумерованными снизу вверх? Если да, то за какое наименьшее число операций это может произойти?
|
|
Сложность: 4 Классы: 7,8,9
|
На доске записано целое положительное число N. Два игрока ходят по очереди. За ход разрешается либо заменить число на доске на один из его делителей (отличных от единицы и самого числа), либо уменьшить число на единицу (если при этом число остается положительным). Тот, кто не может сделать ход, проигрывает. При каких N первый игрок может выиграть, как бы ни играл соперник?
|
|
Сложность: 4 Классы: 9,10,11
|
Один человек задумал 10 натуральных чисел -
x
1, x
2, ... , x
10. Другой отгадывает
их.
Разрешается задавать вопросы вида: "чему равна сумма
a
1x
1+a
2x
2+...+a
10x
10?",
где a
1, a
2, ... , a
10 - некоторые
натуральные числа. Как за 2 вопроса узнать все загаданные числа?
|
|
Сложность: 4 Классы: 9,10,11
|
Исходное сообщение, состоящее из букв русского алфавита
и знака пробела (-) между словами, преобразуется в
цифровое сообщение заменой каждого его символа парой цифр
согласно следующей таблице:
Для зашифрования полученного цифрового сообщения используется
отрезок некоторой последовательности с периодом
1 4 7 6 5 6 3 6 9 0 1 6 3 6 5 6 7 4 9 0 (при этом неизвестно,
с какого места начинается последовательность).
При зашифровании каждая цифра сообщения складывается
с соответствующей цифрой отрезка и
заменяется последней цифрой полученной суммы.
Восстановите сообщение:
2339867216458160670617315588
(Задача с сайта
www.cryptography.ru.)
Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 737]