Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 750]      



Задача 64591

Темы:   [ Кооперативные алгоритмы ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
[ Правило произведения ]
Сложность: 4
Классы: 9,10,11

Автор: Грибок С.

Фокуснику завязывают глаза, а зритель выкладывает в ряд N одинаковых монет, сам выбирая, какие – орлом вверх, а какие – решкой. Ассистент фокусника просит зрителя написать на листе бумаги любое целое число от 1 до N и показать его всем присутствующим. Увидев число, ассистент указывает зрителю на одну из монет ряда и просит перевернуть её. Затем фокуснику развязывают глаза, он смотрит на ряд монет и безошибочно определяет написанное зрителем число.
  a) Докажите, что если у фокусника с ассистентом есть способы, позволяющие фокуснику гарантированно отгадывать число для  N = a  и для  N = b,  то есть способ и для  N = ab.
  б) Найдите все значения N, для которых у фокусника с ассистентом есть такой способ.

Прислать комментарий     Решение

Задача 64608

Темы:   [ Кооперативные алгоритмы ]
[ Четность и нечетность ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

По кругу стоят 99 детей, изначально у каждого есть мячик. Ежеминутно каждый ребёнок с мячиком кидает свой мячик одному из двух соседей; при этом, если два мячика попадают к одному ребёнку, то один из этих мячиков теряется безвозвратно. Через какое наименьшее время у детей может остаться только один мячик?

Прислать комментарий     Решение

Задача 65083

Тема:   [ Взвешивания ]
Сложность: 4
Классы: 8,9

Среди 100 монет есть четыре фальшивых. Все настоящие монеты весят одинаково, фальшивые – тоже, фальшивая монета легче настоящей.
Как за два взвешивания на чашечных весах без гирь найти хотя бы одну настоящую монету?

Прислать комментарий     Решение

Задача 65139

Тема:   [ Взвешивания ]
Сложность: 4
Классы: 6,7

Автор: Фольклор

Есть 13 золотых и 14 серебряных монет, из которых ровно одна фальшивая. Известно, что если фальшивая монета – золотая, то она легче настоящей, так как сделана из меньшего количества золота, а если фальшивая монета – серебряная, то она тяжелее настоящей, так как сделана из более дешевого и тяжелого металла. Как найти фальшивую монету за три взвешивания на чашечных весах без гирь? (Настоящие золотые монеты весят одинаково и настоящие серебряные монеты весят одинаково.)

Прислать комментарий     Решение

Задача 65167

Темы:   [ Кооперативные алгоритмы ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 9,10,11

Перед экстрасенсом кладут колоду из 36 карт рубашкой вверх. Он называет масть верхней карты, после чего карту открывают, показывают ему и откладывают в сторону. После этого экстрасенс называют масть следующей карты и т. д. Задача экстрасенса – угадать масть как можно большее число раз. На деле рубашки карт несимметричны, и экстрасенс видит, в каком из двух положений лежит верхняя карта. Колода подготовлена подкупленным служащим. Служащий знает порядок карт в колоде, и хотя изменить его не может, зато может подсказать, располагая рубашки карт так или иначе согласно договоренности. Может ли экстрасенс с помощью такой подсказки гарантированно обеспечить угадывание масти
  а) более чем у половины карт;
  б) не менее чем у 20 карт?

Прислать комментарий     Решение

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 750]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .