ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 147 148 149 150 151 152 153 >> [Всего задач: 1006]      



Задача 98031

Темы:   [ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.
Докажите, что найдутся двое, которые послали открытки друг другу.

Прислать комментарий     Решение

Задача 103809

Темы:   [ Правило произведения ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 2+
Классы: 7

Сколькими способами можно прочитать в таблице слово
  а)  КРОНА,
  б)  КОРЕНЬ,
начиная с буквы "K" и двигаясь вправо или вниз?

Прислать комментарий     Решение

Задача 35044

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Задачи с ограничениями ]
Сложность: 2+
Классы: 8,9

Найдите количество пятизначных чисел, в десятичной записи которых содержится хотя бы одна цифра 8.

Прислать комментарий     Решение

Задача 35748

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 7,8

Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?

Прислать комментарий     Решение

Задача 60391

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
[ Правило произведения ]
[ Произвольные многоугольники ]
Сложность: 2+
Классы: 8,9

Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

Прислать комментарий     Решение

Страница: << 147 148 149 150 151 152 153 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .