ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Диагонали ромба ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами квадрата.
![]() |
Страница: << 1 2 3 >> [Всего задач: 14]
В окружность вписана трапеция ABCD, причём её основания AB = 1 и DC = 2. Обозначим точку пересечения диагоналей этой трапеции через F. Найдите отношение суммы площадей треугольников ABF и CDF к сумме площадей треугольников AFD и BCF.
В трапеции ABCD диагонали AC и DB взаимно перпендикулярны, ∠ABD = ∠ACD. На продолжениях боковых сторон AB и DC за большее основание AD отложены отрезки AM и DN так, что получается новая трапеция MADN, подобная трапеции ABCD. Найдите площадь трапеции MBCN, если площадь трапеции ABCD равна S, а сумма углов при большем основании равна 150°.
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
Страница: << 1 2 3 >> [Всего задач: 14] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |