ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В классе 30 учеников. Сколькими способами они могут пересесть так, чтобы ни один не сел на своё место? В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами
других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче
своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона.
Какое наибольшее число баронов могло быть при этих условиях? Равнобедренные треугольники ABC (AB = BC) и A1B1C1 (A1B1 = B1C1) равны. Вершины A1, B1 и C1 расположены соответственно на продолжениях стороны BC за точку C, стороны BA за точку A, стороны AC за точку C, причём B1C1 ⊥ BC. Найдите угол B. |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 542]
Дана окружность и точка A внутри неё.
Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.
Дан равнобедренный треугольник ABC с основанием AC. H – точка пересечения высот. На сторонах AB и BC выбраны точки M и K и соответственно так, что ∠KMH = 90°. Докажите, что из отрезков AK, CM и MK можно сложить прямоугольный треугольник.
Три стороны четырёхугольника в порядке обхода равны 7, 1 и 4.
В круге проведены два диаметра AB и CD, M — некоторая точка. Известно, что AM = 15, BM = 20, CM = 24. Найдите DM.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 542]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке