|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике $ABC$ проведена медиана $AM$ и на ней выбрана точка $D$. Касательные, проведенные к описанной окружности треугольника $BDC$ в точках $B$ и $C$, пересекаются в точке $K$. Докажите, что $DD'$ параллельно $AK$, где $D'$ – точка, изогонально сопряжённая точке $D$ относительно треугольника $ABC$. С помощью циркуля и линейки постройте равнобедренный треугольник, основание которого лежало бы на одной стороне данного острого угла, вершина — на другой стороне того же угла, а боковые стороны проходили бы через две данные точки внутри этого угла.
|
Страница: << 1 2 3 4 >> [Всего задач: 18]
Решите систему уравнений:
Найти все действительные решения системы уравнений
Решить систему уравнений:
Найти все действительные решения системы
Решите системы: а) б) x(y + z) = 2, y(z + x) = 2, z(x + y) = 3; в) x2 + y2 + x + y = 32, 12(x + y) = 7xy; г) д) x + y + z = 1, xy + xz + yz = –4, x3 + y3 + z3 = 1; е) x2 + y2 = 12, x + y + xy = 9.
Страница: << 1 2 3 4 >> [Всего задач: 18] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|