|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В четырёхугольной пирамиде SABCD основание ABCD имеет своей осью симметрии диагональ AC , которая равна 9, а точка E пересечения диагоналей четырёхугольника ABCD делит отрезок AC так, что отрезок AE меньше отрезка EC . Через середину бокового ребра пирамиды SABCD проведена плоскость, параллельная основанию и пересекающаяся с рёбрами SA , SB , SC , SD соответственно в точках A1 , B1 , C1 , D1 . Получившийся многогранник ABCDA1B1C1D1 , являющийся частью пирамиды SABCD , пересекается с плоскостью α по правильному шестиугольнику, со стороной 2. Найдите площадь треугольника ABD , если плоскость α пересекает отрезки BB1 и DD1 . В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что $$ R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2). $$ Придумайте многогранник, у которого нет трех граней с одинаковым числом сторон. На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 168]
К концу полугодия у Василия Петрова в журнале стояли такие отметки по математике: 4, 1, 2, 5, 2 Перед тем как выставить полугодовую отметку, учитель математики сказал Васе:
Мальвина всю неделю учила Буратино писать. Она изобразила на диаграмме, сколько букв написал Буратино за каждый из семи дней. Черта на диаграмме показывает среднее число букв (оно равно 9). Буратино оторвал кусок диаграммы, как показано на рисунке. Сколько букв он написал в воскресенье?
В Солнечной долине 10 посёлков. Однажды статистики долины провели исследование численности жителей в посёлках. Обнаружили следующее.
В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны.
Люди заходят с улицы в метро равномерно. Пройдя через турникеты, они оказываются в небольшом зале перед эскалаторами. Двери на вход только что открылись, и сначала зал перед эскалаторами был пустой, а на спуск работал только один эскалатор. Один эскалатор не справлялся с толпой, так что за 6 минут зал наполовину заполнился. Тогда включили на спуск второй эскалатор, но толпа продолжала увеличиваться – ещё через 15 минут зал был полон. За какое время зал опустеет, если включить третий эскалатор?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 168] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|