Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В магазине продают коробки конфет. Среди них есть не менее пяти коробок разной цены (никакие две из них не стоят одинаково). Какие бы две коробки ни купил Вася, Петя всегда сможет также купить две коробки, потратив столько же денег. Какое наименьшее количество коробок конфет должно быть в продаже?

Вниз   Решение


В турнире по олимпийской системе (проигравший выбывает) участвует 50 боксеров.
Какое наименьшее количество боев надо провести, чтобы выявить победителя?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 157]      



Задача 60340

Темы:   [ Правило произведения ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8

Алфавит племени Мумбо-Юмбо состоит из трёх букв. Словом является любая последовательность, состоящая не более чем из четырёх букв.
Сколько слов в языке племени Мумбо-Юмбо?

Прислать комментарий     Решение

Задача 60341

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8

Сколько существует шестизначных чисел, делящихся на 5?

Прислать комментарий     Решение

Задача 60897

Тема:   [ Правило произведения ]
Сложность: 2+
Классы: 7,8,9

Имеются четыре гири и двухчашечные весы без стрелки. Сколько всего различных по весу грузов можно точно взвесить этими гирями, если
  а) гири можно класть только на одну чашку весов;
  б) гири можно класть на обе чашки весов?

Прислать комментарий     Решение

Задача 102839

 [Запись даты]
Тема:   [ Правило произведения ]
Сложность: 2+
Классы: 7,8

В США дату принято записывать так: номер месяца, потом номер дня и год. В Европе же сначала идёт число, потом месяц и год. Сколько в году дней, дату которых нельзя прочитать однозначно, не зная, каким способом она написана?

Прислать комментарий     Решение

Задача 103802

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 2+
Классы: 7,8

Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .