Страница:
<< 129 130 131 132
133 134 135 >> [Всего задач: 1110]
|
|
Сложность: 4 Классы: 10,11
|
В турнире по теннису (где не бывает ничьих) участвовало более 4 спортсменов. Каждый игровой день каждый теннисист принимал участие ровно в одной игре. К завершению турнира каждый сыграл с каждым в точности один раз. Назовём игрока
упорным, если он выиграл хотя бы один матч и после первой своей победы ни разу не проигрывал. Остальных игроков назовём
неупорными. Верно ли, что игровых дней, когда была встреча между неупорными игроками, больше половины?
|
|
Сложность: 4 Классы: 7,8,9,10
|
Перед вами часы. Сколько существует положений стрелок, по которым нельзя определить время, если не знать, какая стрелка часовая,
а какая – минутная?
|
|
Сложность: 4 Классы: 7,8,9
|
а) Прямоугольная таблица из m строк и n столбцов заполнена числами. Переставим числа в каждой строке в порядке возрастания. Если после этого переставить числа в каждом столбце в порядке возрастания, то в каждой строке они по-прежнему будут стоять в порядке возрастания. Докажите это.
б) Что будет, если действовать в другом порядке: в первоначальной таблице сначала переставить числа по возрастанию в столбцах, а потом – в строках: получится ли в результате та же самая таблица, что и в первом случае, или другая?
|
|
Сложность: 4 Классы: 7,8,9
|
В таблице размерами m×n расставлены числа – в каждой клетке по числу. В каждом столбце подчеркнуто k наибольших чисел (k ≤ m), в каждой строке – l наибольших чисел (l ≤ n). Докажите, что по крайней мере kl чисел подчёркнуты дважды.
|
|
Сложность: 4 Классы: 7,8,9
|
В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.
Страница:
<< 129 130 131 132
133 134 135 >> [Всего задач: 1110]