Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 89]
Вдоль прямолинейного участка границы установлено 15 столбов. Около каждого столба поймали несколько близоруких шпионов. Для каждого столба одного из пойманных около него шпионов допросили. Каждый из допрошенных честно сказал, сколько других шпионов он видел. При этом видел он только тех, кто находился около его столба и около ближайших соседних столбов. Можно ли по этим данным восстановить численность шпионов, пойманных около каждого столба?
|
|
Сложность: 3+ Классы: 10,11
|
Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
a1 – 3a2 + 2a3 ≥ 0,
a2 – 3a3 + 2a4 ≥ 0,
a3 – 3a4 + 2a5 ≥ 0,
...,
a99 – 3a100 + 2a1 ≥ 0,
a100 – 3a1 + 2a2 ≥ 0.
Доказать, что все числа ai равны между собой.
|
|
Сложность: 3+ Классы: 10,11
|
Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
a1 – 4a2 + 3a3 ≥ 0,
a2 – 4a3 + 3a4 ≥ 0,
a3 – 4a4 + 3a5 ≥ 0,
...,
a99 – 4a100 + 3a1 ≥ 0,
a100 – 4a1 + 3a2 ≥ 0.
Известно, что a1 = 1, определить a2, a3, ..., a100.
Имеется система уравнений
*
x + *y + *z = 0,
*
x + *y + *z = 0,
*
x + *y + *z = 0.
Два человека поочерёдно вписывают вместо звёздочек числа.
Доказать, что начинающий всегда может добиться того, чтобы система имела ненулевое решение.
|
|
Сложность: 3+ Классы: 7,8,9
|
На дне озера бьют ключи. Стадо из 183 слонов могло бы выпить озеро за 1 день, а стадо из 37 слонов – за 5 дней.
За сколько дней выпьет озеро один слон?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 89]