Страница: 1
2 3 4 5 >> [Всего задач: 23]
|
|
Сложность: 3 Классы: 8,9,10
|
Последовательность чисел {
an} задана
условиями
a1 = 1,
an + 1 =
an +
(
n 1).
Верно ли, что эта
последовательность ограничена?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
а) Могло ли случиться, что до a5 последовательность убывает (a1 > a2 > a3 > a4 > a5), а начиная с a5 – возрастает (a5 < a6 < a7 < ...)?
б) А могло ли случиться наоборот: до a5 последовательность возрастает, а начиная с a5 – убывает?
|
|
Сложность: 4- Классы: 9,10,11
|
При каком значении
K величина
Ak =
максимальна?
|
|
Сложность: 4- Классы: 10,11
|
Последовательность чисел {
xn} задана
условиями:
x1 -
a,
xn + 1 =
.
Докажите, что
последовательность {
xn} монотонна и ограничена. Найдите ее
предел.
|
|
Сложность: 4 Классы: 10,11
|
Дана строго возрастающая функция $f\colon \mathbb{N}_0\to \mathbb{N}_0$ (где $\mathbb{N}_0$ — множество целых неотрицательных чисел), которая удовлетворяет соотношению $f(n+f(m))=f(n)+m+1$ для любых $m,n\in \mathbb{N}_0$. Найдите все значения, которые может принимать $f(2023)$.
Страница: 1
2 3 4 5 >> [Всего задач: 23]