Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 324]
|
|
|
Сложность: 3 Классы: 7,8,9
|
На круглом столе через равные промежутки лежат пирожные. Игорь ходит вокруг стола и съедает каждое третье встреченное пирожное (каждое пирожное может быть встречено несколько раз). Когда на столе не осталось пирожных, он заметил, что последним взял пирожное, которое встретил первым, и прошёл ровно семь кругов вокруг стола. Сколько было пирожных?
Имеется полоска 1×99, разбитая на 99 клеток 1×1, которые раскрашены через одну в чёрный и белый цвет. Разрешается перекрашивать одновременно все клетки любого клетчатого прямоугольника 1×k. За какое наименьшее число перекрашиваний можно сделать всю полоску одноцветной?
|
|
|
Сложность: 3 Классы: 8,9,10,11
|
Петя разрезал прямоугольный лист бумаги по прямой на две части. Затем одну часть снова разрезал по прямой на две. Потом одну из получившихся частей опять разрезал на две части, и так далее, всего он резал бумагу сто раз. Потом Петя подсчитал суммарное количество вершин у всех получившихся многоугольников – получилось всего 302 вершины. Могло ли так быть?
Дано натуральное число $N$.
Вера делает с ним следующие операции:
сначала прибавляет 3 до тех пор, пока получившееся число не станет
делиться на 5
(если изначально $N$ делится на 5, то ничего прибавлять
не надо).
Получившееся число Вера делит на 5.
Далее делает эти же
операции с новым числом, и так далее. Из каких чисел такими операциями
нельзя получить 1?
|
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
В ряд лежат 100 камней: чёрный, белый, чёрный, белый, ..., чёрный, белый. Одной операцией либо выбирают два чёрных камня, между которыми лежат только белые камни, и перекрашивают все эти белые камни в чёрный цвет, либо выбирают два белых камня, между которыми лежат только чёрные камни, и перекрашивают все эти чёрные камни в белый цвет. Можно ли за несколько таких операций получить ряд, в котором идут сначала 50 чёрных камней, а потом 50 белых?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 324]