|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найти такие 50 натуральных чисел, что ни одно из них не делится на другое, а произведение каждых двух из них делится на любое из оставшихся чисел. Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что В выпуклом четырёхугольнике KLMN точки A, B, C, D — середины сторон KL, LM, MN, NK соответственно. Известно, что KL = 3. Отрезки AC и BD пересекаются в точке O. Площади четырёхугольников KAOD, LAOB и NDOC равны соответственно 6, 6 и 9. Найдите: а) площадь четырёхугольника MCOB; б) отрезок MN.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]
На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.
На доске написано несколько положительных чисел, каждое из которых равно полусумме остальных. Сколько чисел написано на доске?
Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?
Составьте систему, состоящую из двух линейных уравнений, для которой строки (1, 1, 1, 1) и (1, 2, 2, 1) служат решениями.
Прямые у = kx + b, у = 2kx + 2b и у = bx + k различны и пересекаются в одной точке. Какими могут быть ее координаты?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|