Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 52]
|
|
Сложность: 3 Классы: 7,8,9
|
а) Двое играют в такую игру: на столе лежат 7 монет по два фунта и 7 монет по одному фунту. За ход разрешается взять монет на сумму не более трех фунтов. Забравший последнюю монету выигрывает. Кто победит при правильной игре?
б) Тот же вопрос, если и тех, и других монет - по 12.
|
|
Сложность: 3 Классы: 7,8,9
|
В нижнем левом углу шахматной доски 8 на 8 стоит фишка. Двое
по очереди передвигают её на одну клетку вверх, вправо или вправо-вверх
по диагонали. Выигрывает тот, кто поставит фишку в правый верхний
угол. Кто победит при правильной игре?
|
|
Сложность: 3+ Классы: 7,8,9
|
Имеются две кучки конфет: в одной - 20, в другой
- 21. За ход нужно съесть одну из кучек, а вторую разделить на
две не обязательно равных кучки. Проигрывает тот, кто не может
сделать ход.
|
|
Сложность: 3+ Классы: 6,7,8
|
Игра начинается с числа 0. За ход разрешается
прибавить к имеющемуся числу любое натуральное число от 1 до 9.
Выигрывает тот, кто получит число 100.
|
|
Сложность: 3+ Классы: 8,9,10
|
Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом
увеличении разность между новым и старым значениями числа была бы больше нуля,
но меньше старого значения. Начальное значение числа равно 2. Выигравшим
считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 52]