ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стороне BC треугольника ABC взята точка D такая, что $ \angle$CAD = 2$ \angle$DAB. Радиусы окружностей, вписанных в треугольники ADC и ADB, равны соответственно 8 и 4, а расстояние между точками касания этих окружностей с прямой BC равно $ \sqrt{129}$. Найдите AD.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 125]      



Задача 55326

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольник KLM вписана окружность, которая касается стороны KL в точке A, а стороны KM — в точке B. Найдите угол LMK, если известно, что BM = 5, AL = 10, а cos$ \angle$LKM = $ {\frac{1}{26}}$.

Прислать комментарий     Решение


Задача 53044

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9

Угол при основании равнобедренного треугольника равен $ \varphi$. Найдите отношение радиуса вписанной в данный треугольник окружности к радиусу описанной окружности.

Прислать комментарий     Решение


Задача 55325

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В треугольник ABC вписана окружность, которая касается стороны AB в точке D, а стороны AC — в точке E. Найдите площадь треугольника ADE, если известно, что AD = 6, EC = 2, а угол BCA равен 60o.

Прислать комментарий     Решение


Задача 54897

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

Через центр O вписанной окружности ω треугольника ABC проведена прямая, параллельная стороне BC и пересекающая стороны AB и AC соответственно в точках M и N.
SABC = BC = 2,  а отрезок AO в четыре раза больше радиуса ω. Найдите периметр треугольника AMN.

Прислать комментарий     Решение

Задача 102266

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

На стороне BC треугольника ABC взята точка D такая, что $ \angle$CAD = 2$ \angle$DAB. Радиусы окружностей, вписанных в треугольники ADC и ADB, равны соответственно 8 и 4, а расстояние между точками касания этих окружностей с прямой BC равно $ \sqrt{129}$. Найдите AD.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .