ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Квадрат со стороной 9 клеток разрезали по линиям сетки на 14 прямоугольников таким образом, что длина каждой стороны любого прямоугольника не меньше, чем две клетки. Могло ли оказаться так, что среди этих прямоугольников не было ни одного квадрата?

Вниз   Решение


В треугольнике ABC угол C равен 60o, а биссектриса угла C равна 5$ \sqrt{3}$. Длины сторон AC и BC относятся как 5:2 соответственно. Найдите тангенс угла A и сторону BC.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 172]      



Задача 54285

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

Расстояния от точки M, лежащей внутри треугольника ABC, до его сторон AC и BC соответственно равны 2 и 4. Найдите расстояние от точки M до прямой AB, если AB = 10, BC = 17, AC = 21.

Прислать комментарий     Решение


Задача 54488

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

Стороны треугольника равны 13, 14 и 15. Найдите радиус окружности, которая имеет центр на средней стороне и касается двух других сторон.

Прислать комментарий     Решение


Задача 55275

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = 8, AC = 6, $ \angle$BAC = 60o. Найдите биссектрису AM.

Прислать комментарий     Решение


Задача 54871

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известны высоты: ha = $ {\frac{1}{3}}$, hb = $ {\frac{1}{4}}$, hc = $ {\frac{1}{5}}$. Найдите отношение биссектрисы CD к радиусу описанной окружности.

Прислать комментарий     Решение


Задача 102509

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол C равен 60o, а биссектриса угла C равна 5$ \sqrt{3}$. Длины сторон AC и BC относятся как 5:2 соответственно. Найдите тангенс угла A и сторону BC.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 172]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .