ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Задан ориентированный ациклический граф. Требуется построить наименьшее количество путей, покрывающих все вершины этого графа и не пересекающихся ни по одной из вершин. Входные данные В первой строке входного файла записано количество вершин графа N (1 ≤ N ≤ 25). Далее перечислены ребра графа, заданные номерами начальной и конечной вершин. Выходные данные Выведите в первую строку выходного файла число K – наименьшее количество путей, которыми можно покрыть все вершины графа. Далее выведите сами эти пути (по одному в каждой строке), задавая их номерами вершин в порядке посещения. Пример входного файла 4 1 2 1 3 2 3 2 4 Пример выходного файла 2 1 2 4 3 Решение |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 155]
Будем считать, что поверхность болота ровная, а веревка достаточно длинная и не может ни за что зацепиться либо запутаться. Иванушка должен, держа в руках конец этой веревки, проскакать по кочкам так, чтобы размотать царевну и вернуться на начальную кочку. Так как царевна очень изнежена, то она ни в какой момент времени не должна быть обмотана веревкой более десяти раз (иначе веревка поранит царевну). Требуется определить такой маршрут движения Иванушки, при котором за
его ноги зацепится минимально возможное количество водорослей.
В следующих N строках записана матрица N × N, составленная из
вещественных чисел. Число в i-й строке и j-м столбце этой матрицы означает
количество водорослей, цепляющихся за ноги Иванушки при прыжке с i-й
кочки на j-ю.
Входные данные В первой строке входного файла записано количество вершин графа N (1 ≤ N ≤ 25). Далее перечислены ребра графа, заданные номерами начальной и конечной вершин. Выходные данные Выведите в первую строку выходного файла число K – наименьшее количество путей, которыми можно покрыть все вершины графа. Далее выведите сами эти пути (по одному в каждой строке), задавая их номерами вершин в порядке посещения. Пример входного файла 4 1 2 1 3 2 3 2 4 Пример выходного файла 2 1 2 4 3
Входные данные Во входном файле содержатся (в указанном порядке) целое число N (1 ≤ N ≤ 30) и N пар вещественных чисел, задающих координаты точек. Числа разделяются пробелами и/или символами перевода строки. Выходные данные Первая строка выходного файла должна содержать минимально возможное значение суммарной площади. В каждую из следующих K строк запишите тройку номеров вершин, образующих очередной из треугольников. Номера вершин разделяются пробелом. Пример входного файла 6 0 0 1 0 10 0 0 2 12 0 10 1 Пример выходного файла 2 1 2 4 3 5 6
взять число из одного сектора; взять число, равное сумме двух или более чисел в смежных секторах. Из новых чисел составляется наибольшая последовательность подряд идущих чисел, начинающаяся с числа M: (M, M+1, M+2, ..., I). Пример на рисунке показывает, как получить все новые числа от 2 до 21 для приведенных на нем чисел в секторах. Серым цветом выделены суммируемые числа.
А) Многоугольники выпуклые, а координаты их вершин даны в произвольном порядке. Б) Хотя бы один из многоугольников невыпуклый, но известно, что у каждого из многоугольников не более одного угла, большего 180 градусов, а координаты вершин даны в порядке обхода по часовой стрелке. Ваша программа по входным данным должна сама определить, какой из этих двух случаев имеет место. Входные данные Первая строка входного файла содержит целое число N – количество вершин в первом многоугольнике (3 ≤ N ≤ 50). Во второй строке записаны координаты этих вершин. Третья и четвертая строки таким же образом задают второй многоугольник. Координаты всех вершин являются целыми числами из диапазона [-32768, 32767]. Выходные данные Выведите в выходной файл искомую площадь не менее чем с 6 верными значащими цифрами. Пример входного файла 3 0 3 0 -3 -3 0 5 -1 1 2 1 1 0 2 -1 -1 -1 Пример выходного файла 2.0
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 155] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|