ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.
Какую максимальную сумму Петя может снять со счета, если других денег у него нет?

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 136]      



Задача 105050

Темы:   [ Деление с остатком ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 6,7,8

Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.
Какую максимальную сумму Петя может снять со счета, если других денег у него нет?

Прислать комментарий     Решение

Задача 64427

Темы:   [ Математическая логика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10,11

На острове 100 рыцарей и 100 лжецов. У каждого из них есть хотя бы один друг. Однажды ровно 100 человек сказали: "Все мои друзья – рыцари", и ровно 100 человек сказали: "Все мои друзья – лжецы". Каково наименьшее возможное количество пар друзей, один из которых рыцарь, а другой лжец?

Прислать комментарий     Решение

Задача 64833

Темы:   [ Теория алгоритмов (прочее) ]
[ Перестановки и подстановки (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10

В строку выписаны 40 знаков: 20 крестиков и 20 ноликов. За один ход можно поменять местами любые два соседних знака. За какое наименьшее количество ходов можно гарантированно добиться того, чтобы какие-то 20 стоящих подряд знаков оказались крестиками?

Прислать комментарий     Решение

Задача 65111

Темы:   [ Математическая логика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10

За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться?

Прислать комментарий     Решение

Задача 65507

Темы:   [ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9

Двенадцать стульев стоят в ряд. Иногда на один из свободных стульев садится человек. При этом ровно один из его соседей (если они были) встаёт и уходит. Какое наибольшее количество человек могут одновременно оказаться сидящими, если вначале все стулья были пустыми?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 136]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .