ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В городе Удоеве выборы мэра проходят следующим образом. Если в очередном туре голосования никто из кандидатов не набрал больше половины голосов, то проводится следующий тур с участием всех кандидатов, кроме последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну; если кандидат набрал больше половины голосов, то он становится мэром и выборы заканчиваются.) Каждый избиратель в каждом туре голосует за одного из кандидатов. Если это кандидат вышел в следующий тур, то избиратель снова голосует за него. Если же кандидат выбыл, то все его избиратели голосуют за одного и того же кандидата из числа оставшихся.
На очередных выборах баллотировалось 2002 кандидата. Мэром стал Остап Бендер, занявший в первом туре k-е место по числу голосов. Определите наибольшее возможное значение k, если Остап Бендер был избран
а) в 1002-м туре;
б) в 1001-м туре.

   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 203]      



Задача 109965

Темы:   [ Математическая логика (прочее) ]
[ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Объединение, пересечение и разность множеств ]
Сложность: 5-
Классы: 8,9,10

На выборах в городскую Думу каждый избиратель, если он приходит на выборы, отдает голос за себя (если он является кандидатом) и за тех кандидатов, которые являются его друзьями. Прогноз социологической службы мэрии считается хорошим, если в нем правильно предсказано количество голосов, поданных хотя бы за одного из кандидатов, и нехорошим в противном случае. Докажите, что при любом прогнозе избиратели могут так явиться на выборы, что этот прогноз окажется нехорошим.
Прислать комментарий     Решение


Задача 66710

Темы:   [ Математическая логика (прочее) ]
[ Двоичная система счисления ]
[ Кооперативные алгоритмы ]
[ Оценка + пример ]
Сложность: 5-
Классы: 8,9,10,11

Король решил поощрить группу из $n$ мудрецов. Их поставят в ряд друг за другом (чтобы все смотрели в одном направлении), на каждого наденут чёрную или белую шляпу. Каждый будет видеть шляпы всех впереди стоящих. Мудрецы по очереди (от последнего к первому) назовут цвет (белый или чёрный) и натуральное число по своему выбору. В конце подсчитывается число мудрецов, которые назвали цвет, совпадающий с цветом своей шляпы: ровно столько дней всей группе будут платить надбавку к жалованью. Мудрецам разрешили договориться заранее, как отвечать. При этом мудрецы знают, что ровно $k$ из них безумны (кто именно – им неизвестно). Безумный мудрец называет белый или чёрный цвет и число вне зависимости от договорённостей. Какое максимальное число дней с надбавкой к жалованью могут гарантировать группе мудрецы, независимо от местонахождения безумных в очереди?

Прислать комментарий     Решение

Задача 105089

Темы:   [ Математическая логика (прочее) ]
[ Криптография ]
[ Деление с остатком ]
Сложность: 5-
Классы: 8,9,10

Из колоды вынули семь карт, показали всем, перетасовали и раздали Грише и Лёше по три карты, а оставшуюся карту
  а) спрятали;
  б) отдали Коле.
Гриша и Лёша могут по очереди сообщать вслух любую информацию о своих картах. Могут ли они сообщить друг другу свои карты так, чтобы при этом Коля не смог вычислить местонахождение ни одной из тех карт, которых он не видит? (Гриша и Лёша не договаривались о каком-либо особом способе общения; все переговоры происходят открытым текстом.)

Прислать комментарий     Решение

Задача 105136

Темы:   [ Математическая логика (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 5
Классы: 9,10,11

В городе Удоеве выборы мэра проходят следующим образом. Если в очередном туре голосования никто из кандидатов не набрал больше половины голосов, то проводится следующий тур с участием всех кандидатов, кроме последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну; если кандидат набрал больше половины голосов, то он становится мэром и выборы заканчиваются.) Каждый избиратель в каждом туре голосует за одного из кандидатов. Если это кандидат вышел в следующий тур, то избиратель снова голосует за него. Если же кандидат выбыл, то все его избиратели голосуют за одного и того же кандидата из числа оставшихся.
На очередных выборах баллотировалось 2002 кандидата. Мэром стал Остап Бендер, занявший в первом туре k-е место по числу голосов. Определите наибольшее возможное значение k, если Остап Бендер был избран
а) в 1002-м туре;
б) в 1001-м туре.
Прислать комментарий     Решение


Задача 109622

Темы:   [ Математическая логика (прочее) ]
[ Теория алгоритмов (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Оценка + пример ]
Сложность: 5
Классы: 10,11

В строку в неизвестном порядке записаны все целые числа от 1 до 100. За один вопрос про любые 50 чисел можно узнать, в каком порядке относительно друг друга записаны эти 50 чисел. За какое наименьшее число вопросов наверняка можно узнать, в каком порядке записаны все 100 чисел?

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 203]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .