Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 203]
|
|
Сложность: 4- Классы: 6,7,8
|
У Буратино есть пять монет, ровно одна из них – фальшивая. Какая именно – известно только Коту Базилио. Буратино может выбрать три монеты, одну из них отдать Коту, и за это узнать про другие две, есть ли среди них фальшивая.
Буратино знает, что Кот за настоящую монету скажет правду, а за фальшивую – соврёт. Как Буратино определить фальшивую монету среди всех пяти, задав не более трёх вопросов?
|
|
Сложность: 4- Классы: 8,9,10,11
|
На острове живут рыцари, лжецы и подпевалы; каждый знает про всех, кто из них кто. В ряд построили всех 2018 жителей острова и попросили каждого ответить "Да" или "Нет" на вопрос: "На острове рыцарей больше, чем лжецов?". Жители отвечали по очереди и так, что их слышали остальные. Рыцари отвечали правду, лжецы лгали. Каждый подпевала отвечал так же, как большинство ответивших до него, а если ответов "Да" и "Нет" было поровну, давал любой из этих ответов. Оказалось, что ответов "Да" было ровно 1009. Какое наибольшее число подпевал могло быть среди жителей острова?
|
|
Сложность: 4- Классы: 7,8,9
|
В компанию из n человек пришёл журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?"
а) Может ли журналист установить, кто из компании есть Z, задав
менее n вопросов?
б) Найдите наименьшее количество вопросов, достаточное для того,
чтобы наверняка найти Z, и докажите, что меньшим числом вопросов обойтись нельзя.
(Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько
вопросов.)
|
|
Сложность: 4- Классы: 7,8,9
|
На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого.)
|
|
Сложность: 4- Классы: 8,9,10
|
Переаттестация Совета Мудрецов происходит так: король выстраивает их в колонну по одному и надевает каждому колпак белого или чёрного цветов. Все мудрецы видят цвета всех колпаков впереди стоящих мудрецов, а цвет своего и всех стоящих сзади не видят. Раз в минуту один из мудрецов должен выкрикнуть один из двух цветов
(каждый мудрец выкрикивает цвет один раз). После окончания этого процесса король казнит каждого мудреца, выкрикнувшего цвет, отличный от цвета его колпака.
Накануне переаттестации все сто членов Совета Мудрецов договорились и придумали, как минимизировать число казнённых. Скольким из них гарантированно удастся избежать казни?
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 203]