Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Углы треугольника равны α, β и γ, а периметр равен P. Найдите стороны треугольника.

Вниз   Решение


На доске написаны три натуральных числа. Петя записывает на бумажке произведение каких-нибудь двух из этих чисел, а на доске уменьшает третье число на 1. С новыми тремя числами на доске он снова проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

ВверхВниз   Решение


Вычислите функции gk,l(x) при  0 ≤ k + l ≤ 4  и покажите, что все они являются многочленами.
Определение многочленов Гаусса gk,l(x) можно найти в справочнике.

ВверхВниз   Решение


Существует ли трехзначное число, равное произведению своих цифр?

ВверхВниз   Решение


Найдите объём правильной шестиугольной пирамиды со стороной основания a и боковым ребром b .

ВверхВниз   Решение


Высота AK, биссектриса BL и медиана CM треугольника АВС пересекаются в точке О, причём  АО = ВО.
Докажите, что треугольник АВС – равносторонний.

ВверхВниз   Решение


Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Найдите, насколько продолжены боковые стороны.

ВверхВниз   Решение


Автор: Матвеев А.

Дан отрезок $AB$. Точки $X, Y, Z$ в пространстве выбираются так, чтобы $ABX$ был правильным треугольником, а $ABYZ$ – квадратом.
Докажите, что ортоцентры всех получающихся таким образом треугольников $XYZ$ попадают на некоторую фиксированную окружность.

ВверхВниз   Решение


Автор: Белухов Н.

Шестиугольник ABCDEF вписан в окружность. Известно, что  AB·CF = 2BC·FACD·EB = 2DE·BCEF·AD = 2FA·DE.
Докажите, что прямые AD, BE и CF пересекаются в одной точке.

ВверхВниз   Решение


Точки E, F – середины сторон BC, CD квадрата ABCD. Прямые AE и BF пересекаются в точке P. Докажите, что  ∠PDA = ∠AED.

ВверхВниз   Решение


Основание пирамиды – равнобедренный треугольник с углом α при вершине. Все двугранные углы при основании пирамиды равны β . Найдите объём пирамиды, если радиус окружности, описанной около треугольника основания, равен R , а высота пирамиды проходит через точку, лежащую внутри треугольника.

ВверхВниз   Решение


Пусть BHb, CHc – высоты треугольника ABC. Прямая HbHc пересекает описанную окружность Ω треугольника ABC в точках X и Y. Точки P и Q симметричны X и Y относительно AB и AC соответственно. Докажите, что  PQ || BC.

ВверхВниз   Решение


Через центр квадрата проведены две перпендикулярные прямые. Докажите, что их точки пересечения со сторонами квадрата образуют квадрат.

ВверхВниз   Решение


Шагреневая кожа исполняет желания, но после каждого желания её площадь уменьшается: либо на 1 дм² в обычном случае, либо в два раза – если желание было заветное. Десять желаний уменьшили площадь кожи втрое, следующие несколько – еще всемеро, а еще через несколько желаний кожа вообще пропала. Какова первоначальная площадь кожи?

ВверхВниз   Решение


Из точки D окружности S опущен перпендикуляр DC на диаметр AB . Окружность S1 касается отрезка CA в точке E , а также отрезка CD и окружности S . Докажите, что DE — биссектриса треугольника ADC .

ВверхВниз   Решение


На табло горят несколько лампочек. Имеется несколько кнопок. Нажатие на кнопку меняет состояние лампочек, с которыми она соединена. Известно, что для любого набора лампочек найдется кнопка, соединенная с нечетным числом лампочек из этого набора. Докажите, что, нажимая на кнопки, можно погасить все лампочки.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 60499

Темы:   [ НОД и НОК. Взаимная простота ]
[ Линейная и полилинейная алгебра ]
Сложность: 3
Классы: 8,9,10

Докажите, что для нечётных чисел a, b и c имеет место равенство   (½ (b + c), ½ (a + c), ½ (a + b)) = (a, b, c).

Прислать комментарий     Решение

Задача 60711

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 3
Классы: 7,8,9

Докажите, что если  6n + 11m  делится на 31, то  n + 7m  также делится на 31.

Прислать комментарий     Решение

Задача 32111

Темы:   [ НОД и НОК. Взаимная простота ]
[ Линейная и полилинейная алгебра ]
Сложность: 3+
Классы: 7,8,9

Каков наибольший возможный общий делитель чисел  9m + 7n  и  3m + 2n,  если числа m и n не имеют общих делителей, кроме единицы?

Прислать комментарий     Решение

Задача 64584

Темы:   [ Классические неравенства (прочее) ]
[ Линейная и полилинейная алгебра ]
Сложность: 4
Классы: 8,9,10,11

Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)

Прислать комментарий     Решение

Задача 107789

Темы:   [ Индукция (прочее) ]
[ Линейная и полилинейная алгебра ]
Сложность: 5-
Классы: 8,9,10,11

На табло горят несколько лампочек. Имеется несколько кнопок. Нажатие на кнопку меняет состояние лампочек, с которыми она соединена. Известно, что для любого набора лампочек найдется кнопка, соединенная с нечетным числом лампочек из этого набора. Докажите, что, нажимая на кнопки, можно погасить все лампочки.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .